836 research outputs found

    Automatic Segmentation Measuring Function for Cardiac MR-Left Ventricle (LV) Images

    Get PDF
    Automatic segmentation approaches are a desirable solution for Endocardium (inner) and Epicardium (outer) contours delineation using cardiac magnetic resonance left ventricle (CMR-LV) short axis images. The Level Set Model (LSM) and Variational LSM (VLSM) is the state-of-the-art in detecting the inner and outer contour for medical images. However, in CMR-LV images segmentation the LSM and VLSM are facing with the issue of re-initialisation because of irregular circle shape. In this paper, we developed an automatic segmentation measuring function based on statistical formulation to solve the re-initialisation issues in huge set of data images. The sign Euclidean distance function successfully classified the negative (inner contour) and positive (outer contour) features. The Fuzzy C mean interaction operator intersects the high membership degree that initialises the centre point. The experiments were conducted using the Sunnybrook and Pusat Juntung Hospital Umum Sarawak (PJHUS) cardiac datasets. This paper aims at developing a distance function to guide the automatic segmentation for LV contours and also to reduce segmentation error

    In Vitro Propagation of Globba brachyanthera K. Schum

    Get PDF
    An in vitro propagation system was developed for Globba brachyanthera K.Schum., a potential ornamental plant by surface sterilized adventitious bulbils in 20% Clorox for 20 minutes and cultured on Gamborg B5 medium supplemented with a biocide Plant Preservative Mixture (PPM) and antibiotic tetracycline. Shoot tips (2-5mm) obtained from in vitro cultured plantlets were induced to form shoots on Gamborg B5 medium containing 20% sucrose and 2.8 g/L Gelrite supplemented with various concentrations of 6-benzylaminopurine (BAP) ranging from 1.0 to 3.0mg/L, either individually or in combination with alpha-naphthalene acetic acid (NAA) at 0.1 mg/L or 0.5 mg/L. All treatments induced formation of multiple shoots as well as rooting after 8 weeks of culture. The highest multiplication rate of 6.6 shoots per explants was obtained in Gamborg B5 medium supplemented with 3.0 mg/L BAP. The generated shoots elongated on Gamborg B5 medium and the multiplication rate did not change further in all of the successive subcultures

    Growth of (110) Diamond using pure Dicarbon

    Get PDF
    We use a density-functional based tight-binding method to study diamond growth steps by depositing dicarbon species onto a hydrogen-free diamond (110) surface. Subsequent C_2 molecules are deposited on an initially clean surface, in the vicinity of a growing adsorbate cluster, and finally, near vacancies just before completion of a full new monolayer. The preferred growth stages arise from C_2n clusters in near ideal lattice positions forming zigzag chains running along the [-110] direction parallel to the surface. The adsorption energies are consistently exothermic by 8--10 eV per C_2, depending on the size of the cluster. The deposition barriers for these processes are in the range of 0.0--0.6 eV. For deposition sites above C_2n clusters the adsorption energies are smaller by 3 eV, but diffusion to more stable positions is feasible. We also perform simulations of the diffusion of C_2 molecules on the surface in the vicinity of existing adsorbate clusters using an augmented Lagrangian penalty method. We find migration barriers in excess of 3 eV on the clean surface, and 0.6--1.0 eV on top of graphene-like adsorbates. The barrier heights and pathways indicate that the growth from gaseous dicarbons proceeds either by direct adsorption onto clean sites or after migration on top of the existing C_2n chains.Comment: 8 Pages, 7 figure

    Dynamics of fluctuations in a fluid below the onset of Rayleigh-B\'enard convection

    Get PDF
    We present experimental data and their theoretical interpretation for the decay rates of temperature fluctuations in a thin layer of a fluid heated from below and confined between parallel horizontal plates. The measurements were made with the mean temperature of the layer corresponding to the critical isochore of sulfur hexafluoride above but near the critical point where fluctuations are exceptionally strong. They cover a wide range of temperature gradients below the onset of Rayleigh-B\'enard convection, and span wave numbers on both sides of the critical value for this onset. The decay rates were determined from experimental shadowgraph images of the fluctuations at several camera exposure times. We present a theoretical expression for an exposure-time-dependent structure factor which is needed for the data analysis. As the onset of convection is approached, the data reveal the critical slowing-down associated with the bifurcation. Theoretical predictions for the decay rates as a function of the wave number and temperature gradient are presented and compared with the experimental data. Quantitative agreement is obtained if allowance is made for some uncertainty in the small spacing between the plates, and when an empirical estimate is employed for the influence of symmetric deviations from the Oberbeck-Boussinesq approximation which are to be expected in a fluid with its density at the mean temperature located on the critical isochore.Comment: 13 pages, 10 figures, 52 reference

    Lepton Masses and Mixing in a Left-Right Symmetric Model with a TeV-scale Gravity

    Get PDF
    We construct a left-right symmetric (LRS) model in five dimensions which accounts naturally for the lepton flavor parameters. The fifth dimension is described by an orbifold, S_1/Z_2 times Z'_2, with a typical size of order TeV^{-1}. The fundamental scale is of order 25 TeV which implies that the gauge hierarchy problem is ameliorated. In addition the LRS breaking scale is of order few TeV which implies that interactions beyond those of the standard model are accessible to near future experiments. Leptons of different representations are localized around different orbifold fixed points. This explains, through the Arkani-Hamed-Schmaltz mechanism, the smallness of the tau mass compared to the electroweak breaking scale. An additional U(1) horizontal symmetry, broken by small parameters, yields the hierarchy in the charged lepton masses, strong suppression of the light neutrino masses and accounts for the mixing parameters. The model yields several unique predictions. In particular, the branching ratio for the lepton flavor violating process mu^- --> e^+ e^- e^- is comparable with its present experimental sensitivity.Comment: 21 pages, 1 figure, references added, discussion on the predictiveness of the model in the generic non-universal case added, to appear in PR

    Formation of Corrugated n = 1 2D Tin Iodide Perovskites and Their Use as Lead-Free Solar Absorbers

    Get PDF
    Major strides have been made in the development of materials and devices based around low-dimensional hybrid group 14 metal halide perovskites. Thus far, this work has mostly focused upon compounds containing highly toxic Pb, with the analogous less toxic Sn materials being comparatively poorly evolved. In response, the study herein aims to (i) provide insight into the impact of templating cation upon the structure of n = 1 2D tin iodide perovskites (where n refers to the number of contiguous two-dimensional (2D) inorganic layers, i.e., not separated by organic cations), and (ii) examine their potential as light absorbers for photovoltaic (PV) cells. It was discovered through systematic tuning of organic dications, that imidazolium rings are able to induce formation of (110)-oriented materials, including the examples of “3 × 3” corrugated Sn-I perovskites. This structural outcome is a consequence of a combination of supramolecular interactions of the two endocyclic N-atoms in the imidazolium functionalities with the Sn-I framework and the higher tendency of Sn2+ ions to stereochemically express their 5s2 lone pairs relative to the 6s2 electrons of Pb2+. More importantly, the resulting materials feature very short separations between their 2D inorganic layers with iodide–iodide (I···I) contacts as small as 4.174 Å, which is amongst the shortest ever recorded for 2D tin iodide perovskites. The proximate inorganic distances, combined with the polarizable nature of the imidazolium moiety, eases the separation of photogenerated charge within the materials. This is evident from the excitonic activation energies as low as 83(10) meV, measured for ImEA[SnI4]. When combined with superior light absorption capabilities relative to their lead congeners, this allowed fabrication of lead-free solar cells with incident photon-to-current and power conversion efficiencies of up to 70 % and 2.26 %, respectively, which are amongst the highest values reported for pure n = 1 2D group 14 metal halide perovskites. In fact, these values are superior to the corresponding lead iodide material, which demonstrates that 2D Sn-based materials have significant potential as less toxic alternatives to their Pb counterparts
    corecore